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Abstract
Using the partial-wave method, the residual electrical resistivity and the
additional and characteristic thermopowers of dislocations for noble and
alkaline metals are calculated. Just the scattering of electrons by the dislocation
core is considered. The existence of resonance electron states near the Fermi
energy within the thermal scatter kBT is supposed. The lattice dilatation
�V = b2

B (bB is the steady Burgers vector) is taken into account. Various forms
of rectangular potential simulating the dislocation core are investigated. It is
shown that unlike the dislocation resistivity, the thermoelectric characteristic of
dislocations shows high sensitivity to change of the width of the resonance level
and its localization relative to the Fermi energy. A model dislocation potential
is suggested; with it, a rather good agreement with available experimental data
is obtained.

1. Introduction

It is known that thermopower is very sensitive to any slight changes in the structure and
composition of a metal, especially when they cause disturbances of the electronic energy
structure near the Fermi surface. The thermopower is closely connected with the electrical
resistivity. However, despite significant success in the theoretical explanation of the dislocation
residual resistivity [1–6], calculations of additional thermopower due to dislocations are far
less common. Except for our early work [7], in which we explained the sign and order of the
value of the dislocation contribution to the thermopower for copper, as far as we know, there
are no other results in the literature. The fact is that the calculated value of the additional
thermopower due to defects depends not only on the value of the scattering cross section, but
also on the character of its dependence on the energy near the Fermi surface. For this reason,
models of defects used rather successfully for calculation of the residual electrical resistivity
appear often to be unsuitable for calculation of the additional thermopower.

The debate in the literature on the disturbances of the crystal lattice caused by dislocations
has continued for more than 40 years. It can now be confidently stated that there are two
basic mechanisms responsible for the scattering of conduction electrons by dislocations: the
first is connected with the long-range elastic strain fields and the second with the short-range
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inelastic distortion of the lattice in the dislocation core [8, 9]. The investigations performed
during the last few years have shown that a dislocation’s elastic strain field causes the small-
angle scattering of electrons, whereas the dislocation core causes the large-angle scattering
[10, 11]. The former exhibits strong deviation from Matthiessen’s rule, i.e. a dependence of
the dislocation resistivity per unit dislocation density �ρd/Nd on the dislocation density Nd

and temperature T . However, the large-angle scattering by the dislocation core is independent
of Nd and T at least in a first approximation. The earliest attempts to calculate the residual
resistivity of dislocations were connected with the estimation of the influence of the elastic
strain fields using linear elasticity theory [12], as well as a second-order elasticity treatment
[13, 14]. However, they all resulted in values of �ρd/Nd that were too small—almost two
orders of magnitude lower than the experimental data. A review of this work is given, for
example, in [3] (part 4.1).

Even within linear elasticity theory there is a change of the crystal volume, caused by the
dislocation strain field, �Vst , which is not equal to zero. The total change of the volume due
to dislocations �V consists of the elastic change of the volume, excluding the area of the core
(�Vst ), and the inelastic volume change in the dislocation core (�Vcor ), and �V ≈ b2

B where
bB is Burgers’ vector [15–17].

Harrison was the first to consider the inelastic dilatation in the dislocation core for copper,
applying the Born approximation [18]. Simulating the dislocation core by a chain of vacancies,
he increased the calculated value of�ρd/Nd by an order of magnitude. Later, using the partial-
wave method with the same dislocation model [2], it became possible to obtain agreement with
experiment as regards order of magnitude. However, the attempts to explain the thermoelectric
properties of plastically deformed metals within the framework of these representations have
failed. It was not possible to explain even the sign of the observed thermoelectric effect [7].

The subsequent progress is connected with the consideration of the dislocation resonance
electronic states, localized close to the Fermi surface [3–5]. Their existence for linear defects
was predicted by Brown [19]. Later experimental confirmation was obtained by measuring
the temperature dependence of the dislocation resistivity for a number of metals (Cu, Al, Mo,
W, Zn, Ag, K) [20–23]. To explain the temperature dependence, the presence of additional
electron levels on dislocations a few meV above the Fermi level has been assumed [20].

Brown suggested a dislocation resonance model based on a δ-function potential giving
electron resonance states at the Fermi surface, and obtained in a calculation of �ρd/Nd quite
a good agreement with experiment for a large number of non-transition metals [3]. However,
this model had a number of drawbacks, such as the fact that the results are independent of
the value of the Burgers vector and the orientation of the dislocations relative to the electrical
current, and also the neglect of the lattice dilatation in the dislocation core.

Our dislocation model is devoid of these shortcomings. The model proved quite successful
in the calculation of �ρd/Nd for a wide range of monovalent, polyvalent, and transition
metals [5]. In the present work we investigate this model and show that it can be applied
successfully for the calculation not only of the dislocation resistivity but also the thermoelectric
characteristics of dislocations. Only monovalent metals (i.e. noble and alkaline) will be con-
sidered, as their Fermi surfaces are simpler and better measured, and consequently can be
taken into account in the calculations of the thermopower more precisely.

2. Approaches to and method of calculation

We believe that the dislocation core gives rise to the major contribution to the electron scattering
and change of the electron-transfer properties. The scattering due to the long-range elastic strain
fields surrounding the dislocation can be neglected, because their influence is several tens of
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times weaker both for separate dislocations and for dislocation arrays [24]. The influence of
dislocations on the resistivity and diffusion thermopower is considered assuming the validity
of Matthiessen’s rule.

The scattering cross section of the dislocation is calculated by the partial-wave method
(PWM). It should be noted that the PWM is an exact scattering theory method, and it allows
one to choose one parameter of the scattering potential self-consistently, taking into account
the screening effects [8]. As a result, the calculated cross section is almost independent of the
form of the scattering potential, and the more complicated Coulomb potentials can be replaced
by simpler square ones without loss of precision.

First, as a scattering potential, we considered an axially symmetrical potential used earlier
for calculation of the dislocation resistivity in [5]:

V (r) =



V1 r < R1

V0 R1 � r � R2

0 r > R2.

(1)

This potential is one of the simplest that permits one to take into account the main features of
the perturbation of the crystal lattice in the dislocation core—that is, the dilatation of the crystal
lattice, and the existence of resonance quasi-stationary electron states in the area of positive
values of energy, in particular near the Fermi energy. Such a form of potential reflects real
distortion of the lattice in the dislocation core, namely the existence of a compressing area side
by side with the expanding one, which can capture the conduction electrons forming short-lived
states. Although the scattering potential for individual dislocations is non-axially symmetrical
(especially for an edge dislocation), the average dislocation potential for a polycrystal with a
random dislocation distribution may be considered as axially symmetrical.

In view of the fact that the dislocation length is much greater than the width of the
dislocation core, the edge effect can be neglected, which allows one to regard just the
perpendicular component of the wavevector k⊥ = k sin ϕ as changing during the scattering
(here k is the value of the wavevector at the Fermi level and ϕ is the angle between the
dislocation axis and vector k).

The solution of the Schrödinger equation for potential (1) is given in [5] in detail. The
expressions for the phase shifts ηm are given there too; they represent a superposition of
potential (αm) and resonant (βm) components:

ηm = αm + βm (2)

where

βm = arctan
�m

2(Er,m − E⊥)
.

Here, E⊥ = k2
⊥ = k2 sin2 ϕ, Er,m and �m are the position and width of the mth resonance

level. The width of the level �m determines the lifetime of this electron state, τm ∼ h̄/�m.
Now we shall stop briefly to consider the choice of potential parameters. The external

radius R2 is determined from the value of the lattice dilatation in the dislocation core �V .
According to [15], �V = b2

B per unit of dislocation length; thus R2 = bB/
√
π . As the

vector bB , we take the steady Burgers vector of the full dislocation; thus for FCC metals, it is
(1/2)〈110〉 and has the value a0/

√
2 (a0 is the lattice parameter). For such a choice, the value

of R2 is close to the atomic radius for cubic structures.
The height of the potential barrier V0 is determined self-consistently from the screening

condition (the Friedel sum rule), which for linear defects has the form [13]

k

π2

∫ π

0

∞∑
m=−∞

ηm(ϕ) sin ϕ dϕ = ξ (3)
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where ξ is the line density of charge along the dislocation axis, expressed in terms of the
quantity of electron charge as ξ = ns �V/%a , where %a is the atomic volume and ns is
the number of carriers per atom (for monovalent metals, ns = 1). The left-hand side of (3)
represents the number of additional electronic states created by the charged linear defect per
unit dislocation length.

The localization of resonance states depends on the depth of the potential well V1. The
criterion for choice of the value of V1 is based on the assumption that the dislocation resonance
levels are close to the Fermi energy—within the thermal scatter kBT :

|Er − EF | � kBT (4)

because electrons with such energy take part in the electron-transfer process and in that case
their interaction with the resonance states will be the most intense. Only the zero level Er,0

satisfies condition (4); the levels Er,m for m � 1 were too far from the Fermi energy and were
not taken into account (from here on, Er,0 ≡ Er ).

The last parameter of the potential is the internal radius R1; it is a free parameter in
the analysis. Change of this parameter varies the width and consequently the lifetime of the
resonance state. We assumed in [5] thatR1 = R2/2, and it was noted there that the variation of
R1 does not significantly influence the scattering cross section if the height of the potentialV0 is
chosen self-consistently. In the present work will investigate, in more detail, how the variation
of the parameter R1 affects the results on the calculated electrical resistivity and thermopower
due to dislocations.

The transport scattering cross section averaged over all possible directions of the
wavevector relative to the dislocation axis can be presented as a superposition of the resonance
(QR), potential (QP ), and interference (QI ) components [25]:

Q = 1

2k

∫ π

0

(
�2

(E⊥ − Er)2 + �2/4
− 2

[
�2 sin δ0 − �(E⊥ − Er) sin(2δ0)

]
(E⊥ − Er)2 + �2/4

+ 4
∞∑
m=0

sin2 δm

)
dϕ

= QR + QI + QP = 2

k

∫ π

0

∞∑
m=0

sin2(ηm − ηm+1) dϕ (5)

where δm = αm − αm+1.
The potential and resonant components are always positive. The interference component

QI is negative for the negatively charged defect. Thus, the interference of the potential and
resonant scattering results in the general scattering cross section Q being less than the sum of
the potential and resonance ones. Moreover, if the line charge density of the defect ξ is fairly
large, the value of Q can even be less than the potential component QP . The dependence of
the general cross section Q and its components QP , QR , and QI on the electron energy E

for copper are presented in figure 1 (corresponding curves: 2, 1, 5, and 6). Here Er = EF

is assumed; this energy is shown by a vertical line. The maximum of the resonance peak is
displaced considerably to the right relatively to the resonance energyEr . The main cause of this
displacement is that here a random orientation of dislocations is considered and the scattering
cross section is averaged over the angle ϕ. When all of the dislocations are perpendicular to
the current direction (that is, k⊥ = k), the maximum of the resonant peak coincides with the
resonance energy (curve 4). It is obvious that in this case the maximum value of the scattering
cross section is higher.

The change of the electrical resistivity due to dislocations per unit of their density, within
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Figure 1. The dependence of the scattering cross sectionQ and its resonance (QR), potential (QP ),
and interference (QI ) components on the electron energy E for copper: 1: QP ; 2: Q; 5: QR ;
6: QI ; 4: Q(E) for normal incidence of electrons on the dislocation axis (k⊥ = k); 3: Q(E) for
the cylindrical potential barrier (n = 0).

the relaxation-time approximation, is defined by

�ρd

Nd

= h̄k%aQ

nse2
. (6)

The change of the absolute thermopower due to a unit of dislocation density (additional
thermopower) is estimated from the expression [26]

�Sd

Nd

= S0
�ρd

ρNd

(
�x

x
− 1

)
(7)

where ρ = ρ0 + �ρd , and

x = −
(
∂ ln ρ0

∂ lnE

)
E=EF

�x = −
(
∂ ln�ρd
∂ lnE

)
E=EF

= − k

2Q

(
∂Q

∂k′

)
k′=k

+

(
∂ lnF

∂ lnE

)
E=EF

= �xQ + �xF .

Here S0 and ρ0 are the absolute thermopower and electrical resistivity of annealed metal at
temperature T ; kB is the Boltzmann constant; e is the electron charge; F is the area of the
Fermi surface. These expressions are correct for temperatures T  TD and T � TD (here TD
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is the Debye temperature), where it is possible to neglect the phonon-drag effect and inelastic
scattering of electrons by phonons and defects [26].

The characteristic thermopower of the dislocations is

Sd = π2k2
BT

3|e|
(
∂ ln�ρd
∂E

)
E=EF

= −π2k2
BT

3|e|EF

�x. (8)

Thus, to calculate the thermoelectric characteristics of dislocations it is necessary to know the
values of the parameters �xF and �xQ. The theoretical estimates of �xF differ substantially
between various studies and remain far from the experimental values; in the present work, as
the value of �xF , the magnitude obtained from the thermoelectric size-effect measurements is
taken [27]. Among the available experimental data, preference was given to those which were
measured for foils. The results obtained on the thin films show a wide scatter of values, because
of the uncontrolled impurity contents and the high concentration of defects, which sometimes
have a great dependence on the film thickness (the false size effect). In view of the absence
of reliable experimental data for alkaline metals, as the value of �xF the free-electron-model
value is taken: �xF = 1, in view of the closeness of their Fermi surfaces to the free-electron
sphere [28].

The derivative (∂Q/∂k′)k′=k needed for calculation of �xQ was approximated by the
average value of the ratio obtained for a change of k by about ±0.001 Å. Decrease of the
interval of differentiation by an order of magnitude did not change the average value up to the
third digit. Summing over m was carried out up to m = 10; the screening condition (3) was
fulfilled within an accuracy of 10−4.

3. Results and discussion

In the work described, all parameters of the potential (except R1) are determined quite
unambiguously. Therefore it was necessary to estimate first of all how the change of radius R1

influences the results for the electrical characteristics of dislocations. The variation of R1 was
defined through the coefficient n, showing what part of R1 arises from R2; that is, R1 = nR2.
The coefficient nwas changed from 0 to 0.9. The results of this analysis for copper are given in
table 1. These are: the variation of the dislocation electrical resistivity�ρd/Nd ; thermoelectric
parameters �xQ, �x; the potential parameters V1, V0; and the width of the resonance level �
for Er = EF (�xF = −1.20 [27]).

At n = 0 we have a simple cylindrical potential barrier of height V0 with radius R2; quasi-
stationary states are absent for such a potential. Such a model of dislocations reflects only
the fact of lattice dilatation in the area of the dislocation core which creates a negative surplus
charge in the lattice. It is obvious that in this case the parameter �xQ takes on a classical value
equal to 0.5. The dependence Q(E) for n = 0 is shown by the chain line in figure 1 (curve 3).

It is obvious that the variation of n from 0 to 0.9 results in a change of the disloc-
ation residual resistance, from 1.95 to 1.76 × 10−13 µ% cm3; this is by about 10%. The
measured values of the dislocation resistivity (�ρd/Nd)

exp for copper are within the interval
(1.3–2.3)× 10−13 µ% cm3 [10]; more rigorous analysis gives (1.6±0.2)×10−13 µ% cm3 [3].
Therefore, the calculated value of �ρd/Nd agrees quite well with the measured one for any
R1. However, a different situation arises for the calculated thermoelectric characteristics of the
dislocations. As is seen from table 1, the value of�xQ has more than doubled in magnitude over
the same range of variation of R1, and has even changed in sign; the value of �x, proportional
to Sd , has altered substantially too. This means that there is an obvious ambiguity in the choice
of radiusR1 in the calculation of the dislocation thermoelectric characteristics. Thus, potential
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Table 1. The dependence of the scattering parameters and electrical characteristics of the
dislocations on the value of the internal radius R1 of potential (1) for copper.

V0 V1 � �ρd/Nd

n (eV) (eV) (eV) (10−19 % cm3) �xQ �x

0 6.50 — 0 1.79 0.50 −0.70
0.1 17.39 125.05 1.14 1.95 −0.73 −1.93
0.3 18.83 23.68 1.30 1.91 −0.84 −2.04
0.5 21.66 10.41 1.64 1.90 −0.95 −2.15
0.7 29.55 3.62 1.87 1.84 −1.14 −2.34
0.9 68.63 0.53 2.90 1.76 −1.35 −2.55

(1), which is quite suitable for calculation of the dislocation resistivity, appears to be unsuitable
for calculation of the dislocation thermopower.

To eliminate the uncertainty in the choice of the parameter R1, the scattering potential of
the dislocation core was simplified and replaced by the potential

V (r) =




0 r < R1

V0 R1 � r � R2

0 r > R2.

(9)

This is the same potential as we used earlier for calculation of the dislocation contribution
to the thermopower of copper [7]. This potential is a particular case of potential (1), but it does
not have any ambiguous parameter affecting the form of the potential, which is important for
the thermopower calculation. Now the internal radius R1 is determined from condition (4).

The results of the calculation with the potential (9) for temperature T = 273 K are listed
in table 2. There are also the parameters used for the material: a0, S0, and ρ0. The values of
the parameter �xF for Cu, Ag, and Au are respectively −1.20, −1.91, and −1.05 [27]. For
comparison, the available experimental data on the residual dislocation resistivity (�ρd/Nd)

exp

are presented. It is obvious that the agreement with our results is quite good, especially for
noble metals, for which the experimental data are more reliable.

The comparison of the results obtained for the thermopower with experiment is rather
laborious, as the quantitative characteristics of the dislocation contribution to the thermopower
are very poor and are presented only for noble metals in references [29, 30]. Polak reported
measurements of the change of electrical resistivity �ρ and thermopower �S due to defects
introduced by plastic deformation (mainly dislocations) in gold [29]. It was found that the ratio
�S/�ρ = 0.76 V K−1 %−1 cm−1, and the thermoelectric parameter �x = −2.5. The results
presented here for gold are respectively�Sd/�ρd = 0.61 V K−1 %−1 cm−1 and�x = −2.48.
The characteristic thermopower of dislocations measured at room temperature for noble metals
by Lukhvich is close to 2 µV K−1 [30]. The values of Sd calculated here for these metals
at the same temperature are in the range from 2.6 to 4.3 µV K−1. Thus, one may state that
there is a quite satisfactory agreement of the calculated thermoelectric characteristics of the
dislocations with the available experimental data.

As follows from expression (7), the change of the thermopower per unit of dislocation
density �Sd/Nd and also the ratio �Sd/�ρd should not depend substantially on the temp-
erature in the range of quasi-elastic scattering of electrons on phonons and defects (T  TD
and T � TD), where S0 and ρ0 show practically linear dependences on the temperature.

From comparison of the results for copper obtained with the different potentials (1) and
(9), which are presented in tables 1 and 2, one may conclude that: firstly, the change of the
level width slightly influences the value of the dislocation resistivity, but substantially alters
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Table 2. Parameters of the calculation and the electrical characteristics of dislocations in
monovalent metals for Er = EF (T = 273 K).

a0 ρ0 S0

(Å) (µ% cm) (µV K−1) �

Metal [31] [8] [27] (eV) �xQ

Cu 3.615 1.55 1.71 3.10 −1.43

Ag 4.086 1.50 1.38 2.44 −1.43

Au† 4.078 2.04 1.74 2.44 −1.43
2.48 −1.54

Li 3.509 8.50 10.60 2.19 −1.89

K 5.211 6.30 −12.80 1.00 −1.87

Cs 6.062 19.00 −0.90 0.74 −1.87

�ρd/Nd

�ρd/Nd (10−19 % cm3) Sd �Sd/Nd �Sd/�ρd

Metal (10−19 % cm3) (experiment) (µV K−1) (10−19 V cm2 K−1) (V K−1 %−1 cm−1)

Cu 1.73 1.6 ± 0.2 [3] 2.49 0.86 0.50
1.7 [32]

Ag 2.49 1.9 [32] 4.03 4.40 1.77
3.1 [33]

Au† 2.48 2.6 [32] 2.98 1.51 0.61
2.47 3.12 1.66 0.67

Li 2.93 1.26 −3.22 −1.10

K 9.60 4 [32] 2.72 23.65 2.46

Cs 15.12 3.69 3.65 0.24

†The second line for gold presents results at Er = EF + kBT .

the thermopower; secondly, different forms of potentials give approximately identical values
of�ρd/Nd and Sd , if they (other conditions being equal) result in close widths of the resonance
levels (�). One may note, for comparison, that different scattering potentials give rather close
values of the scattering cross section and values of �ρd/Nd if they satisfy the same screening
condition (the Friedel sum rule); that is, the value of the residual resistivity carries information
mainly about the value of the surplus charge of the defect.

To find out how sensitive the results are to the position of the resonance level with
respect to the Fermi energy, the results for copper were recalculated for the resonance energy
Er = EF + �, where � = ±nkBT (here kBT = 0.023 eV). The results are presented in
table 3.

It is obvious that the shift of Er by an amount of the order of magnitude of kBT (here,
up to 12 kBT ) leads to a small change of the dislocation resistivity whereas the additional
thermopower varies rather substantially. So the value of �ρd/Nd for copper changes by a few
per cent (no more than 12%) and remains practically within the error of the measurements,
whereas the value varies by several times and even reverses in sign. This indicates that
the thermoelectric characteristics of the defects can give quantitative information about the
localization of electronic states on the defects relative to the Fermi energy.

4. Conclusions

Thus, the dislocation model, proposed by us earlier, explains rather well not only the
contribution of dislocations to the electrical resistivity for a wide range of metals [5], but
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Table 3. Influence of the shift Er relative to EF on the dislocation resistivity and thermopower in
copper (Er = EF ± nkBT ) for T = 273 K.

� Er � �ρd/Nd �Sd/Nd

(kBT ) (eV) (eV) �xQ (10−19 % cm3) (10−19 V cm2 K−1)

0 7.036 3.10 −1.43 1.73 0.86

1 7.059 3.15 −1.51 1.72 0.94

−1 7.013 3.49 −1.38 1.65 0.77

4 7.128 3.22 −1.80 1.67 1.21

−4 6.944 3.85 −1.18 1.58 0.55

8 7.220 3.34 −2.11 1.60 1.46

−8 6.852 4.12 −0.91 1.55 0.28

12 7.312 3.45 −2.37 1.52 1.63

−12 6.760 4.38 −0.58 1.53 −0.03

also the available experimental data on the dislocation contribution to the thermopower for
noble metals (the results for �Sd/Nd for alkaline metals still require an experimental check).

The basic features of this model are following:

• the dislocation core gives rise to the dominant contribution to the change of the electron-
transfer properties caused by dislocations;

• the lattice dilatation in the dislocation core has a value of about b2
B which determines the

linear surplus charge of the defect and its radius;
• the existence of the compressing area side by side with the expanding one leads to capture

of conduction electrons, forming short-lived quasi-stationary states near the Fermi energy
(±kBT ).

However, the model potential used earlier for calculation of �ρd/Nd [5] appears to
be unsuitable for calculation of �Sd/Nd , because it contains an ambiguously determined
parameter of the potential form. Changing the parameter results in a change of the resonant
level width that hardly influences the results for�ρd/Nd , but substantially affects the results for
�Sd/Nd Another model potential is proposed which appears to work quite well in calculations
of the resistivity and thermopower due to dislocations for monovalent metals.

On the basis of the research performed, one may conclude that, unlike the residual
resistivity, the additional and characteristic thermopower are very sensitive to the change of
width of the resonance level and its localization near the Fermi energy.

Therefore, whereas the residual resistivity of defects carries information mainly about the
value of the excess charge of defects in the lattice and does not depend significantly on the form
of the scattering potential (if the Friedel sum rule is fulfilled), the thermoelectric characteristics
of the defects contain additional information about the quasi-stationary electron states localized
on the defects, their energies, and the lifetimes, and depend substantially on the form of the
scattering potential.

Thus the thermopower not only is highly sensitive, but also is a highly informative property.
The experimental data on the contribution of defects or impurity to the thermopower can give
quantitative information about the localization of the electron states close to the Fermi surface.
So our results for gold correlate better with experiment at Er = EF + kBT (these results are
given in the second line for Au in table 2); this means that the dislocation resonance states in
gold are located above the Fermi energy by about kBT . That correlates with the conclusion
reached in [20]. One would like to hope that there will be an expansion of experimental
research into the thermoelectric properties of defects in the near future; that should provide
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new information on the electron states on defects and further develop the electron-transfer
theory.
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